a. y = Cx^-4
b. y = Cx^-1/4
c. y = Cx^1/4
d. y = Cx^4
e. sin y + cos x = C
f. cos y + sin x = C
g. cos y - sin x = C
h. sin y - cos x = C
i. none of these
C is an arbitrary constant, from the choices which would be a solution to the differential equation xy'+4y=0 ?
The answer is a because:
xy'+4y=0
y'=-4y/x
since y'=(dy/dx)
we separate variables to solve
(1/y)dy=(-4/x)dx
integrate and get
ln(y)=-4ln(x)+C
y=e^(-4ln(x)+C)
y=Ce^(ln(x^-4)) - Property of logs
e^(ln(x))= x so:
y=Cx^(-4) (A)
Reply:x(dy/dx) +4y =0
xdy/dx = -4y
dy /-4y = dx /x
-4logy = logx+ logc
y^-4 = xc
y = cx^-1/4
potion b
log c
Reply:y´/y= =-4/x
lnI yI =-4lnIxI+K
so y = Cx^-4 (a)
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment